Osculating Lattice Paths and Alternating Sign Matrices

نویسنده

  • R. Brak
چکیده

Osculating lattice paths are sets of directed lattice paths which are not allowed to cross or have common edges, but are allowed common vertices. We derive a constant term formula for the number of such lattice paths. The formula is obtained by solving a set of simultaneous recurrence relations. Alternating sign matrices are in simple bijection with a subset of osculating lattice paths. This leads to a constant term formula for the number of alternating sign matrices. Résumé Par “chemins de contact” on entend des ensembles de chemins orientés dans un réseau qui ne se traversent pas et qui n’ont pas d’arêtes communes, mais qui peuvent avoir des noeuds communs. Nous établissons une formule de type “terme constant” pour le nombre de tels chemins. On obtient cette formule en résolvant un ensemble de récurrences simultanées. Les matrices à signes alternées sont en bijection simple avec un sous-ensemble de chemins de contact. On obtient ainsi une nouvelle formule de type “terme constant” pour le nombre de telles matrices. ∗email: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osculating Paths and Oscillating Tableaux

The combinatorics of certain tuples of osculating lattice paths is studied, and a relationship with oscillating tableaux is obtained. The paths being considered have fixed start and end points on respectively the lower and right boundaries of a rectangle in the square lattice, each path can take only unit steps rightwards or upwards, and two different paths within a tuple are permitted to share...

متن کامل

A refined Razumov-Stroganov conjecture

We extend the Razumov-Stroganov conjecture relating the groundstate of the O(1) spin chain to alternating sign matrices, by relating the groundstate of the monodromy matrix of the O(1) model to the so-called refined alternating sign matrices, i.e. with prescribed configuration of their first row, as well as to refined fully-packed loop configurations on a square grid, keeping track both of the ...

متن کامل

Pattern Avoidance in Alternating Sign Matrices

We generalize the definition of a pattern from permutations to alternating sign matrices. The number of alternating sign matrices avoiding 132 is proved to be counted by the large Schröder numbers, 1, 2, 6, 22, 90, 394 . . .. We give a bijection between 132-avoiding alternating sign matrices and Schröder-paths, which gives a refined enumeration. We also show that the 132, 123avoiding alternatin...

متن کامل

From a Polynomial Riemann Hypothesis to Alternating Sign Matrices

This paper begins with a brief discussion of a class of polynomial Riemann hypotheses, which leads to the consideration of sequences of orthogonal polynomials and 3-term recursions. The discussion further leads to higher order polynomial recursions, including 4-term recursions where orthogonality is lost. Nevertheless, we show that classical results on the nature of zeros of real orthogonal pol...

متن کامل

Alternating sign matrices with one -1 under vertical reflection

We define a bijection that transforms an alternating sign matrix A with one −1 into a pair (N,E) where N is a (so called) neutral alternating sign matrix (with one −1) and E is an integer. The bijection preserves the classical parameters of Mills, Robbins and Rumsey as well as three new parameters (including E). It translates vertical reflection of A into vertical reflection of N . A hidden sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997